299 research outputs found

    CGC and initial state effects in Heavy Ion Collisions

    Full text link
    A brief review of the phenomenological studies in the field of heavy ion collisions based on the Color Glass Condensate theory and, in particular, of those relying in the use of the BK equation including running coupling effects is presented.Comment: 6 pages, 5 figures. Contribution to the proceedings of the Hot Quarks 2010 Conference. June 21-26, La Londe Les Maures, Franc

    Forward particle productions at RHIC and the LHC from CGC within local rcBK evolution

    Full text link
    In order to describe forward hadron productions in high-energy nuclear collisions, we propose a Monte-Carlo implementation of Dumitru-Hayashigaki-Jalilian-Marian formula with the unintegrated gluon distribution obtained numerically from the running-coupling BK equation. We discuss influence of initial conditions for the BK equation by comparing a model constrained by global fit of small-x HERA data and a newly proposed one from the running coupling MV model.Comment: Talk given at conference Quark Matter 2011, 4 page

    First correction to JIMWLK evolution from the classical equations of motion

    Get PDF
    We calculate some O(αs2){\cal O}(\alpha_s^2) corrections to the JIMWLK kernel in the framework of the light-cone wave function approach to the high energy limit of QCD. The contributions that we consider originate from higher order corrections in the strong coupling and in the density of the projectile to the solution of the classical Yang-Mills equations of motion that determine the Weizs\"acker-Williams fields of the projectile. We study the structure of these corrections in the dipole limit, showing that they are subleading in the limit of large number of colours NN, and that they cannot be fully recast in the form of dipole degrees of freedom.Comment: 4 pages, LaTeX, 2 eps figures included using graphicx, uses enclosed iopart.cls; contribution to the proceedings of Quark Matter 2006 (Shanghai, November 14th-20th 2006

    CGC initial conditions at RHIC and LHC

    Full text link
    Monte-Carlo implementations of kT -factorization formula with both KLN and running-coupling BK unintegrated gluon distributions for nucleus-nucleus collisions are used to analyze recent experimental data on the particle multiplicities from RHIC(Au+Au@200GeV) and LHC([email protected]). We also compare the predicted transverse energy at midrapidity to new data from ALICE.Comment: 6 pages and 7 figures. Contribution to the proceedings of the 27th Winter Workshop on Nuclear Dynamics held in Winter Park, Colorado, 6-13 February 201

    Nuclear size and rapidity dependence of the saturation scale from QCD evolution and experimental data

    Full text link
    The solutions of the Balitsky-Kovchegov evolution equations are studied numerically and compared with known analytical estimations. The rapidity and nuclear size dependences of the saturation scale are obtained for the cases of fixed and running coupling constant. These same dependences are studied in experimental data, on lepton-nucleus, deuteron-nucleus and nucleus-nucleus collisions, through geometric scaling and compared with the theoretical calculations.Comment: 8 pages, 8 figures. Contribution based on talks given by J. G. Milhano and C. A. Salgado to the proceedings of ``Hard Probes 2004'', Ericeira (Portugal), November 4-10, 200

    Nuclear Shadowing and Diffraction

    Full text link
    The relation between diffraction in lepton-proton collisions and shadowing of nuclear structure functions which arises from Gribov inelastic shadowing, is described. A model realizing such relation, which produces a parameter-free description of experimental data on nuclear structure functions at small xx, is presented. The application to the description of multiplicities in nuclear collisions is discussed and related to other approaches.Comment: LaTeX, 6 pages, 5 eps figures, uses enclosed ws-ijmpa.cls; invited talk given by N. Armesto at the Eighth Workshop on Non-Perturbative Quantum Chromodynamics, Paris, France, June 7th-11th 200

    Initial State: Theory Status

    Full text link
    I present a brief discussion of the different approaches to the study initial state effects in heavy ion collisions in view of the recent results from Pb+Pb and p+p collisions at the LHC.Comment: 8 pages, 6 figures. Contribution to the proceedings of the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, QM2011. Annecy, France, 22-28 May 201

    Shock wave collisions in AdS5: approximate numerical solutions

    Full text link
    We numerically study the evolution of a boost-invariant N=4 SYM medium using AdS/CFT. We consider a toy model for the collision of gravitational shock waves, finding that the energy density first increases, reaches a maximum and then starts to decrease, matching hydrodynamics for late times. For the initial conditions we consider, the hydrodynamic scale governing the late time behaviour is to very good approximation determined by the area of the black hole horizon at initial times. Our results provide a toy model for the early time evolution of the bulk system in heavy-ion collisions at RHIC and the LHC.Comment: 29 pages, 9 figure

    Heavy Quark Potential at Finite Temperature Using the Holographic Correspondence

    Get PDF
    We revisit the calculation of a heavy quark potential in N =4 supersymmetric Yang-Mills theory at finite temperature using the AdS/CFT correspondence. As is widely known, the potential calculated in the pioneering works of Rey et al. and Brandhuber et al. is zero for separation distances r between the quark and the anti-quark above a certain critical separation, at which the potential has a kink. We point out that by analytically continuing the string configurations into the complex plane, and using a slightly different renormalization subtraction, one obtains a smooth non-zero (negative definite) potential without a kink. The obtained potential also has a non-zero imaginary (absorptive) part for separations r > r_c = 0.870/\pi T . At large separations r the real part of the potential does not exhibit the exponential Debye falloff expected from perturbation theory and instead falls off as a power law, proportional to 1/r^4 for r > r_0 = 2.702 / \pi T.Comment: 5 pages, 3 figures. Title modified. Discussion extended and references modifie
    • …
    corecore